155k views
3 votes
Integration using part formula

\int\limits {x^nlogx} \, dx

User Junique
by
7.7k points

1 Answer

2 votes

Answer:

Integration of I=
\int {x^(n)logx \, dx=
[(logx)/(n+1) x^((n+1))]-[(1)/((n+1)^(2))x^((n+1))]

Explanation:

Given integral is I=
\int {x^(n)logx \, dx

Take logx=t


x=e^(t)


x^(n)=e^(nt)


(1)/(x) dx=dt


dx=xdt


dx=e^(t)dt

I=
\int (e^(nt))(t)(e^(t))\, dt

I=
\int (e^((n+1)t))(t)\, dt

Using integration by part,


I= (t)\int [e^((n+1)t)]\, dt-\int[(d)/(dt){t}*\int (e^((n+1)t))]\\\\I= (t) [(1)/(n+1)e^((n+1)t)]-\int[1*(1)/(n+1)e^((n+1)t)]\,dt\\\\I=[(t)/(n+1)e^((n+1)t)]-[(1)/((n+1)^(2))e^((n+1)t)]

Writing in terms of x

I=
[(t)/(n+1)e^((n+1)t)]-[(1)/((n+1)^(2))e^((n+1)t)]

I=
[(logx)/(n+1)e^((n+1)logx)]-[(1)/((n+1)^(2))e^((n+1)logx)]

I=
[(logx)/(n+1)e^{logx^((n+1))}]-[(1)/((n+1)^(2))e^{logx^((n+1))}]

I=
[(logx)/(n+1) x^((n+1))]-[(1)/((n+1)^(2))x^((n+1))]

Thus,

Integration of I=
\int {x^(n)logx \, dx=
[(logx)/(n+1) x^((n+1))]-[(1)/((n+1)^(2))x^((n+1))]

User SharmaPattar
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories