152k views
4 votes
Pls hurry. thank you.

Pls hurry. thank you.-example-1

1 Answer

3 votes

Answer:


\large\boxed{(1-2\cos^2\varphi)/(\sin\varphi\cos\varphi)-\tan\varph=-\cot\varphi}

Explanation:


(1-2\cos^2\varphi)/(\sin\varphi\cos\varphi)-\tan\varphi\qquad\text{use}\ \tan x=(\sin x)/(\cos x)\\\\=(1-\cos^2\varphi-\cos^2\varphi)/(\sin\varphi\cos\varphi)-(\sin\varphi)/(\cos\varphi)\qquad\text{use}\ \sin^2x+\cos^2x=1\to\sin^2x=1-\cos^2x\\\\=(\sin^2\varphi-\cos^2\varphi)/(\sin\varphi\cos\varphi)-(\sin\varphi\sin\varphi)/(\sin\varphi\cos\varphi)=(\sin^2\varphi-\cos^2\varphi-\sin^2\varphi)/(\sin\varphi\cos\varphi)


=((\sin^2\varphi-\sin^2\varphi)-\cos^2\varphi)/(\sin\varphi\cos\varphi)=(-\cos^2\varphi)/(\sin\varphi\cos\varphi)\qquad\text{cancel one}\ \cos\varphi\\\\=(-\cos\varphi)/(\sin\varphi)=-(\cos\varphi)/(\sin\varphi)\qquad\text{use}\ \cot x=(\cos x)/(\sin x)\\\\=\boxed{-\cot\varphi}

User Rahul Sawant
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories