52.8k views
2 votes
solve for x and y ,32base x+51base y and 23base x +42 base y =710. ,number bases interms of simultaneous equation​

User Michael Ma
by
5.4k points

1 Answer

4 votes

Answer:


x = -348.5, y = 350.5

Explanation:

32base x means
3x + 2

Similarly, 32base x+51base y equals to
3x + 2 + 5y + 1 = 3x + 5y + 3

and 23base x +42 base y means
2x + 3 + 4y + 2 = 2x + 4y + 5

As per the given condition,
3x + 5y + 3 = 2x + 4y + 5\\x + y = 2

Putting,
y = 2 - x in
2x + 4y + 5 = 710, we get


2x + 4y = 705\\2x + 4(2 - x) = 705\\8 - 2x = 705\\4 - x = 352.5\\x = -348.5


y = 2 - x = 2 - (-348.5) = 2 + 348.5 = 350.5

User Lyzbeth
by
5.7k points