Answer:
neither even nor odd
Explanation:
f(x)=
=
![x^(2) +10x+25](https://img.qammunity.org/2020/formulas/mathematics/high-school/m5yxbeq7umlvmtcr266t3mflalp4z18tlu.png)
A function is an even function if f(-x) = f(x).
A function is an odd function if f(-x) = -f(x).
f(-x) =
=
![x^(2) -10x+25](https://img.qammunity.org/2020/formulas/mathematics/high-school/3tajso1pvjgxms9b4hx1sjssyoamfacchu.png)
-f(x) =
![-x^(2) -10x-25](https://img.qammunity.org/2020/formulas/mathematics/high-school/4alpdvnhmc45j6dtwq7q5miwb9z4zo9vdd.png)
Clearly we can see that
f(-x) ≠ f(x)
f(-x) ≠ -f(x)
Hence the function is neither even nor odd.