Answer:
The angular velocity is 15.37 rad/s
Solution:
As per the question:
![\theta = 54.6^(\circ)](https://img.qammunity.org/2020/formulas/physics/college/vecpyzgxoxhsoby0mlts8qcbu8vhkd0v19.png)
Horizontal distance, x = 30.1 m
Distance of the ball from the rotation axis is its radius, R = 1.15 m
Now,
To calculate the angular velocity:
Linear velocity, v =
![\sqrt{(gx)/(sin2\theta)}](https://img.qammunity.org/2020/formulas/physics/college/whuz9b59i3a6kmq552964wter1ft8u44pz.png)
v =
![\sqrt{(9.8* 30.1)/(sin2* 54.6)}](https://img.qammunity.org/2020/formulas/physics/college/v6tv3fbagoffggsrsr8jce583ibpry6czp.png)
v =
![\sqrt{(9.8* 30.1)/(sin2* 54.6)}](https://img.qammunity.org/2020/formulas/physics/college/v6tv3fbagoffggsrsr8jce583ibpry6czp.png)
v =
![\sqrt{(294.98)/(sin109.2^(\circ))} = 17.67\ m/s](https://img.qammunity.org/2020/formulas/physics/college/g99fz7lqrpjrn5cfj1jj1t842dcxeg1ejq.png)
Now,
The angular velocity can be calculated as:
![v = \omega R](https://img.qammunity.org/2020/formulas/physics/college/gfm5pxmy43rqeox75dgx3omgl8wgs1dukl.png)
Thus
![\omega = (v)/(R) = (17.67)/(1.15) = 15.37\ rad/s](https://img.qammunity.org/2020/formulas/physics/college/bsn1rqxv2aw1f0f8y880qnfjvhq3u25n7l.png)