Answer:
The speed of the electron is
.
Step-by-step explanation:
Given:
Mass of electron is,
![m=9.11* 10^(-31)\ kg](https://img.qammunity.org/2020/formulas/physics/college/6kolz5ukgnk296tbgwb2s9mdlmv2re0wpp.png)
Radius of circle is,
![R=2.00* 10^(-2)\ m](https://img.qammunity.org/2020/formulas/physics/high-school/vjo3h0t7xhhion9tkhv2svsftzd26kyyq2.png)
Force acting on the electron is,
![F=4.60* 10^(-14)\ N](https://img.qammunity.org/2020/formulas/physics/high-school/a8m8xp7yb6omftp953u9ki6dngfp4u11d2.png)
Now, we know that, for a circular turn, the force acting on the electron is due to centripetal force. Centripetal force acting on the electron is given as:
![F=(mv^2)/(R)](https://img.qammunity.org/2020/formulas/physics/high-school/k716ju4im6gszszlttrt05yxa59snr7604.png)
Here, 'v' is the velocity of the electron.
Now, plug in all the given values and solve for 'v'. This gives,
![4.60* 10^(-14)=(9.11* 10^(-31)v^2)/(2.00* 10^(-2))\\\\9.11* 10^(-31)v^2=4.60* 10^(-14)* 2.00* 10^(-2)\\\\9.11* 10^(-31)v^2=9.2* 10^(-16)\\\\v^2=(9.2* 10^(-16))/(9.11* 10^(-31))\\\\v^2=1.01* 10^(15)\\\\v=\sqrt{1.01* 10^(15)}\\\\v=3.178* 10^7\ m/s](https://img.qammunity.org/2020/formulas/physics/high-school/mi8ha4u5n57egwte1xv96bwbkerxwxe41e.png)
Therefore, the speed of the electron is
.