Answer:
69.970 rev
Step-by-step explanation:
Case 1: until the washer reaches its top spin
Initial angular speed ωi = 0 rev /s
Final angular speed ωf = 7 rev /s
Time t = 9 s
The angular acceleration is
ωf - ωi = α t
α = 7 - 0 / 9
![= 0.77rev/s^2](https://img.qammunity.org/2020/formulas/physics/college/s65gflre0g675i858cc01h8eljhtx51j7t.png)
The angular displacement
![θ_1 = \omega_i t + (1/2) \alpha t^2](https://img.qammunity.org/2020/formulas/physics/college/2qnopmha860jct0km2166k98fsgnc7zqhz.png)
![=0 + (1/2)(0.77)(9)^2](https://img.qammunity.org/2020/formulas/physics/college/r2t6hizzptnsksewe9eqynlew9cnk8lmrq.png)
= 31.185 rev
Case II: the washer coming to rest from top spin
Initial angular speed ωi = 7 rev /s
Final angular speed ωf = 0 rev /s
Time t = 11 s
The angular acceleration is
ωf - ωi = α t
α = 0 - 7 / 11
= - 0.63 rev/s^2
The angular displacement
![\theta_2 = \omega_i t + (1/2)\alpha t^2](https://img.qammunity.org/2020/formulas/physics/college/ay3n593kdlqp3fs4ounmn2a7k9eukvbwwk.png)
![=7(11) + (1/2) (-0.63)(11)^2](https://img.qammunity.org/2020/formulas/physics/college/n6qq9qyuie1vl9egtsmfxhub1rhm3x7z0d.png)
=38.885 rev
Total number of revolutions
θ1 + θ2 = 31.185 rev + 38.885 rev
= 69.970 rev