220k views
5 votes
Three locations are marked next to a river. Points B and C are on the same side of the river, and point A is on the other side of the river. To find the distance AB across a river, a distance BC of 241 meters is laid off on one side of the river. It is found that the angle at point B is 108.6° and the angle at point C is 14.9°. Find the distance AB (across the river). Round to the nearest meter.

1 Answer

2 votes

Answer:

74.31353

=74 m

Explanation:

given that three locations are marked next to a river. Points B and C are on the same side of the river, and point A is on the other side of the river. To find the distance AB across a river, a distance BC of 241 meters is laid off on one side of the river. It is found that the angle at point B is 108.6° and the angle at point C is 14.9°.

we have information about triangle ABC as side BC =241, Angle B = 108.6 and angle C = 14.9 degrees.

Hence this is an obtuse scalene triangle.

Angle ∠A = 56.5° (III angle)

Using sine formula we get


(AB)/(sin 14.6) =(BC)/(sin 56.5) \\AB = 74.31353

So distance AB is 74 metres.

User Morgan Tocker
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories