Let
denote the rocket's position, velocity, and acceleration vectors at time
.
We're given its initial position
![\vec r(0)=\langle0,0,10\rangle\,\mathrm m](https://img.qammunity.org/2020/formulas/mathematics/college/csbttrrhcps8u2da0rasd4grdy8u9ii5u5.png)
and velocity
![\vec v(0)=\langle250,450,500\rangle(\rm m)/(\rm s)](https://img.qammunity.org/2020/formulas/mathematics/college/61opal9zqa0zhs8fve39x0ugwasncptx42.png)
Immediately after launch, the rocket is subject to gravity, so its acceleration is
![\vec a(t)=\langle0,2.5,-g\rangle(\rm m)/(\mathrm s^2)](https://img.qammunity.org/2020/formulas/mathematics/college/4zi3o3l3tyhb1vapb6j85euyuvpo9nmo9y.png)
where
.
a. We can obtain the velocity and position vectors by respectively integrating the acceleration and velocity functions. By the fundamental theorem of calculus,
![\vec v(t)=\left(\vec v(0)+\displaystyle\int_0^t\vec a(u)\,\mathrm du\right)(\rm m)/(\rm s)](https://img.qammunity.org/2020/formulas/mathematics/college/a4m7yo24tixq6nsmff1kpcl55jv5vbhwx1.png)
![\vec v(t)=\left(\langle250,450,500\rangle+\langle0,2.5u,-gu\rangle\bigg|_0^t\right)(\rm m)/(\rm s)](https://img.qammunity.org/2020/formulas/mathematics/college/d5gwtzqvuqzbksjpu8u143nmuuk9b01o83.png)
(the integral of 0 is a constant, but it ultimately doesn't matter in this case)
![\boxed{\vec v(t)=\langle250,450+2.5t,500-gt\rangle(\rm m)/(\rm s)}](https://img.qammunity.org/2020/formulas/mathematics/college/z5s7ae22yxvplq4i6o2boevw9x5ekcoqu9.png)
and
![\vec r(t)=\left(\vec r(0)+\displaystyle\int_0^t\vec v(u)\,\mathrm du\right)\,\rm m](https://img.qammunity.org/2020/formulas/mathematics/college/qa2ovjmepchxutkoif0bmhykyutyxj2ina.png)
![\vec r(t)=\left(\langle0,0,10\rangle+\left\langle250u,450u+1.25u^2,500u-\frac g2u^2\right\rangle\bigg|_0^t\right)\,\rm m](https://img.qammunity.org/2020/formulas/mathematics/college/7kq62mtd90qztvzb82rr79r155hbksuhk1.png)
![\boxed{\vec r(t)=\left\langle250t,450t+1.25t^2,10+500t-\frac g2t^2\right\rangle\,\rm m}](https://img.qammunity.org/2020/formulas/mathematics/college/3ujfre1itgmf35wfy3pz86z9jnb0uhm0cq.png)
b. The rocket stays in the air for as long as it takes until
, where
is the
-component of the position vector.
![10+500t-\frac g2t^2=0\implies t\approx102\,\rm s](https://img.qammunity.org/2020/formulas/mathematics/college/uzxxbig2pxnjjitk4a2v9bfozixtdphyw8.png)
The range of the rocket is the distance between the rocket's final position and the origin (0, 0, 0):
![\boxed\](https://img.qammunity.org/2020/formulas/mathematics/college/qbum9t3e421os7hx4tu4b91a0wfq2tonw7.png)
c. The rocket reaches its maximum height when its vertical velocity (the
-component) is 0, at which point we have
![-\left(500(\rm m)/(\rm s)\right)^2=-2g(z_(\rm max)-10\,\mathrm m)](https://img.qammunity.org/2020/formulas/mathematics/college/gy3d9675n34orhhqw2aersc92fyslj1r04.png)
![\implies\boxed{z_(\rm max)=125,010\,\rm m}](https://img.qammunity.org/2020/formulas/mathematics/college/bnf7p8nldhhhms5rn3eg0w9nf9n9kh9sh3.png)