Answer:
A. 14 min
B . 0.995 M
Step-by-step explanation:
A.
Using integrated rate law for first order kinetics as:
Where,
is the concentration at time t
is the initial concentration
Given:
The final concentration is dropped to 6.25 % of the initial concentration. SO,
= 0.0625
k =
So,
![\ln \left(0.0625\right)=\ln \left(e^{-3.3* \:10^(-3)t}\right)](https://img.qammunity.org/2020/formulas/chemistry/college/ua1dpf2fmif5y37tpdg64a8qp6ifh59i7u.png)
![\ln \left(0.0625\right)=-3.3* \:10^(-3)t](https://img.qammunity.org/2020/formulas/chemistry/college/j60enstww7cp06dx1rez78hqw7dlgb82oh.png)
![t=840.18\ s](https://img.qammunity.org/2020/formulas/chemistry/college/47mzfojblqyi3dvs5lrl85wf2p34p6g6un.png)
Also, 1 s = 1/60 minutes.
So,
![t=(840.18)/(60)=14\ min](https://img.qammunity.org/2020/formulas/chemistry/college/nr2a8aa7g6m74u85xgao4j9bbj20e40hnv.png)
14 minutes it takes for the concentration of the reactant to drop to 6.25% of the original concentration.
B.
(a) Half life expression for second order kinetic is:
Where,
is the initial concentration = ?
k is the rate constant =
M⁻¹s⁻¹
Half life = 296 s
So,
![296=(1000)/(1.7[A_o])](https://img.qammunity.org/2020/formulas/chemistry/college/vtvgfyy7xeub4gdy5yst80q4jsw2lmihxo.png)
![[A_o]=(1250)/(629)](https://img.qammunity.org/2020/formulas/chemistry/college/ldkon7o384deas0s6cwi82o60nsg4dnuo1.png)
![[A_o]=1.99\ M](https://img.qammunity.org/2020/formulas/chemistry/college/qhulp0mr8yelvg2kd8f4ikzhi83kjvt5jj.png)
Half life is the time at which the concentration of the reactant reduced to half. So, concentration remains =
= 0.995 M