Answer: (0.465, 5.535)
Explanation:
Formula to calculate the confidence interval (when population standard deviation is unknown) is given by :-
![\overline{x}\pm t_(\alpha/2) (s)/(√(n))](https://img.qammunity.org/2020/formulas/mathematics/college/53f50ppyy4cpada0b59jouk6r80b5gj733.png)
, where
= sample mean.
s= sample standard deviation.
n= Sample size.
= critical value
By considering the given information , we have
s=0.75
n= 9
Significance level =
[1-0.90=0.1]
By using students' t distribution -table , the critical value for 95% confidence level :
![t_(\alpha/2 , n-1)=t_(0.1/2,\ 8)=1.86](https://img.qammunity.org/2020/formulas/mathematics/college/7hcx6mfkc5c7vddgg6kkke3mp4t2b2xqo8.png)
[Note: degree of freedom = n-1]
Now, the 90% confidence interval for the true mean weight of these Southern California avocados will be :
![6\pm (1.86) (0.75)/(√(9))](https://img.qammunity.org/2020/formulas/mathematics/college/wq3o6zyygmkvp3w5gudjtlov814l4kw928.png)
![6\pm (1.86) (0.75)/(3)](https://img.qammunity.org/2020/formulas/mathematics/college/hw7hs5esqhtf49o5r4svase4k679k150qq.png)
![6\pm (1.86) 0.25](https://img.qammunity.org/2020/formulas/mathematics/college/6f0fw2u0m2y86m683fxrco287lfz1wuh1x.png)
![6\pm 0.465=(6-0.465,\ 6+0.465)=(0.465,\ 5.535)](https://img.qammunity.org/2020/formulas/mathematics/college/bdhbloqlir2iqsryibsm4lpq7qwzp0oscx.png)
Hence, the required confidence interval =(0.465, 5.535)