70.9k views
4 votes
A round pipe of varying diameter carries petroleum from a wellhead to a refinery. At the wellhead, the pipe's diameter is 59.1 59.1 cm ( 0.591 0.591 m) and the flow speed of the petroleum is 11.9 11.9 m/s. At the refinery, the petroleum flows at 5.29 5.29 m/s. What is the volume flow rate of the petroleum along the pipe and what is the pipe's diameter at the refinery?

User Fiddy Bux
by
6.0k points

1 Answer

7 votes

Answer:

The volume flow rate is 3.27m³/s

Diameter at the refinery is 88.64cm

Explanation:

Given

At the wellhead

Pipes diameter, d2 = 59.1cm = 0.591m

Flow speed of petroleum f2 = 11.9m/s

At the refinery,

Pipes diameter, d1 = ? Unknown

Flow speed of petroleum, f1 = 5.29m/s

Calculating the volume flow rate of petroleum along the pipe.

Volume flow rate = Flow rate * Area along the pipe

V = 11.9 * πd²/4

V = 11.9 * 22/7 * 0.591²/4

V = 3.265778m³/s

The volume flow rate is 3.27m³/s -------- Approximated

Since it's not stated if the flowrate is uniform throughout the pipe, we'll assume that flow rate is the same through out...

Using V1A1 = V2A2, where V1 & V2 Volume flow rate at both ends and area = Area of pipes at both ends

This gives;

V1A1 = V1A2

V1*πd1²/4 = V2 * πd2²/4 ----------- Divide through by π/4

So, we are left with

V1d1² = V2d2²

5.29 * d1²= 11.9 * 59.1²

d1² = 11.9 * 59.1²/5.29

d1² = 7857.172

d1 = √7857.172

d1 = 88.6406904305240618

d1 = 88.64cm --------------- Approximated

User Loreny
by
5.2k points