11.4k views
4 votes
Find the flux of the vector field Bold Upper F equals left angle 0 comma 0 comma negative 2 right angle across the slanted face of the tetrahedron z equals 2 minus x minus y in the first octant with the normal vectors pointing in the positive​ z-direction. You may use either an explicit or parametric description of the surface.The flux is_______.

User Rezwana
by
8.8k points

1 Answer

2 votes

The plane
z=2-x-y has vertices at the intercepts (2, 0, 0), (0, 2, 0), and (0, 0, 2). Parameterize the tetrahedral face (call it
T) by


\vec s(u,v)=(1-v)((1-u)\langle2,0,0\rangle+u\langle0,2,0\rangle)+v\langle0,0,2\rangle


\vec s(u,v)=\langle2(1-u)(1-v),2u(1-v),2v\rangle

for
0\le u\le1 and
0\le v\le1. Take the normal vector to
T to be


(\partial\vec s)/(\partial u)*(\partial\vec s)/(\partial v)=4(1-v)\langle1,1,1\rangle

Then the flux of
\vec F across
T is


\displaystyle\iint_T\vec F\cdot\mathrm d\vec S=4\int_0^1\int_0^1(1-v)\langle0,0,-2\rangle\cdot\langle1,1,1\rangle\,\mathrm du\,\mathrm dv


=\displaystyle-8\int_0^1(1-v)\,\mathrm dv=\boxed{-4}

User Sergico
by
7.8k points