232k views
4 votes
Hurry! I need this now!

Hurry! I need this now!-example-1
User Ilvez
by
7.8k points

2 Answers

5 votes

Answer:

OPTION A:
$ (7)/(√(5)) $

Explanation:

Given: f(x) =
$ √(x^2 - 4) $ and g(x) = 3x - 2

We are to find f(g(x)).

f(g(x)) = f(3x - 2)

Substituting 3x - 2 in place of x in f(x), we get

f(g(x)) =
$ √((3x - 2)^2 - 4)$


$ \implies √(9x^ 2 - 12x + 4 - 4) = √(9x^2 -12x) $

Differentiating this we get:


$ f(g(x))^' = (1)/(2) (9x^2 - 12x)^{(-1)/(2)}} * (18x - 12) $

At x = 3,


$ f(g(3))^' = (1)/(2)[9(3)^2 - 12(3)]^{(-1)/(2)}} * [18(3) - 12] $


$ = (1)/(2) [81 - 36]^{(1)/(2)}} * 42 $


$ = (21)/(√(45)) $


$ (21)/(3√(5)) $


$ (7)/(√(5))} $

Therefore, the answer is 7/√5.

User Russ Clark
by
7.7k points
2 votes

Answer:

The answer is option a

Explanation:

Given,

f(x) =
\sqrt{x^(2)-4 }

g(x) = 3x - 2

By substituting g(x) in f(x) we get

f(g(x)) =
\sqrt{(3x-2)^(2) -4}

By differentiating with respect to we get


\frac{\mathrm{d}\sqrt{(3x-2)^(2) -4}}{\mathrm{d} x} =
1/2\sqrt{(3x-2)^(2)-4}×2×(3x-2)×3

By using chain rule we get this equation


{\mathrm{d}f(g(x))}/{\mathrm{d} x} =
1/2\sqrt{(3x-2)^(2) -4}×2×(3x-2)×3

Substituting x = 3 we get


{\mathrm{d}f(g(x))}/{\mathrm{d} x} = 7/
√(5)

Answer is option a

User Xhh
by
8.4k points

No related questions found