Answer:
The expanded value of the given expression is
![(3a^4b)(5ab^2)-(a^5b^2)(9b)=6a^5b^3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jmknmh11y2xsa0kj4vf15ra25ygdscyjzh.png)
Explanation:
Given expression is
![(3a^4b)(5ab^2)-(a^5b^2)(9b)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/d0wsb6ekzq6fdysqhnjnbo3mc480bp6jyp.png)
To find the value of the given expression:
![(3a^4b)(5ab^2)-(a^5b^2)(9b)=15a^5b^3-9a^5b^3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2wzs9c96blz730plufyntmxga3wnzw2q1k.png)
(By multiplying the products and doing algebraci subtracion of the above expression)
Now taking the common terms in the above equation we get
![(3a^4b)(5ab^2)-(a^5b^2)(9b)=3a^5b^3(5-3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/m9voy1s4ro4rg1ittfp7wjeuxpej6cb2fp.png)
![=3a^5b^3(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/54u2s89a19w4p56elpc42onp05lka440cf.png)
![=6a^5b^3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/vhoaz0xk2ab3ntpwogznhue4knv2zv8sdb.png)
Therefore the expanded value of the given expression is
![(3a^4b)(5ab^2)-(a^5b^2)(9b)=6a^5b^3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jmknmh11y2xsa0kj4vf15ra25ygdscyjzh.png)