146k views
1 vote
1. The heat of fusion for the ice-water phase transition is 335 kJ/kg at 0°C and 1 bar. The density of water is 1000 kg/m3 at these conditions, and that of ice is 915 kg/m3. Develop an expression for the change of the melting temperature of ice with pressure. Use this to compute the freezing point of water in Denver, CO where the mean atmospheric pressure is 84.6 kPa

1 Answer

3 votes

Answer:

Expression for the change of melting temperature with pressure..> T₂ = T₁exp(-(P₂-P₁)/(3.61x10⁹ Pa), Freezing Point = 0°C

Step-by-step explanation:

Derivation from state postulate

Using the state postulate, take the specific entropy, , for a homogeneous substance to be a function of specific volume and temperature .

ds = (partial s/partial v)(t) dv + (partial s/partial T)(v) dT

During a phase change, the temperature is constant, so

ds = (partial s/partial v)(T) dv

Using the appropriate Maxwell relation gives

ds = (partial P/partial T)(v) dv

s(β) – s(aplαha) = dP/dT (v(β) – v(α))

dP/dT = s(β) – s(α)/v(β) – v(α) = Δs/Δv

Here Δs and Δv are respectively the change in specific entropy and specific volume from the initial phase α to the final phase β.

For a closed system undergoing an internally reversible process, the first law is

du = δq – δw = Tds - Pdv

Using the definition of specific enthalpy, h and the fact that the temperature and pressure are constant, we have

du + Pdv = dh Tds,

ds = dh/T,

Δs = Δh/T = L/T

After substitution of this result into the derivative of the pressure, one finds

dp/dT = L/TΔv

This last equation is the Clapeyron equation.

a)

(dP/dT) = dH/TdV => dP/dlnT = dH/dV

=> dP/dlnT = dH/dV = [H(liquid) - H(solid)]/[V(liquid) - V(solid)]

= [335,000 J/kg]/[1000⁻¹ - 915⁻¹ m³/kg]

= -3.61x10⁹ J/m³ = -3.61x10⁹ Pa

=> P₂ = P₁ - 3.61x10⁹ ln(T₂/T₁) Pa

or

T₂ = T₁exp(-(P₂-P₁)/(3.61x10⁹ Pa)

b) if the pressure in Denver is 84.6 kPa:

T₂(freezing) = 273.15exp[-(84,600-100,000)/(3.61x10⁹)]

≅ 273.15 = 0°C T₁(freezing) essentially no change

User MickaelFM
by
6.2k points