Answer:
The maximum force is 846.11 N.
Step-by-step explanation:
Given that,
Stress = 3 MPa
Radius = 45 mm
Thickness = 2 mm
We need to calculate the internal pressure
Using formula of internal pressure
![\sigma=(p* r)/(t)](https://img.qammunity.org/2020/formulas/physics/college/jfqz78xvmxx6wsd9jcit9us4jq34r8kvhd.png)
![p=(\sigma t)/(r)](https://img.qammunity.org/2020/formulas/physics/college/dffhuo60w2uat7wsm2akgal46wn2i7z15n.png)
Put the value into the formula
![p=(3*10^(6)*2*10^(-3))/(45*10^(-3))](https://img.qammunity.org/2020/formulas/physics/college/4luw6qylnv4tokyh0wp5kulfak2h1w8b7m.png)
![p=0.133*10^(6)\ Pa](https://img.qammunity.org/2020/formulas/physics/college/1p4y2mc89d5ch3otpwuiqm16w1k8q68682.png)
We need to calculate the maximum force
Using formula of maximum force
![p=(P)/(A)](https://img.qammunity.org/2020/formulas/physics/college/vsbn7x9kfhwwty0sdt91h7zdkyl3k8msuc.png)
![P=p* A](https://img.qammunity.org/2020/formulas/physics/college/eqnn0er4s7leoxerzsi37lwyj4bg6ts34n.png)
Here, P = force
p = internal pressure
Put the value into the formula
![F=0.133*10^(6)*\pi*(45*10^(-3))^2](https://img.qammunity.org/2020/formulas/physics/college/d3jd85k0nqv0qocr39i2dp4d8zaq1knt8v.png)
![F=846.11\ N](https://img.qammunity.org/2020/formulas/physics/college/cau8fnd5con3wed52itinane357ul00q3d.png)
Hence, The maximum force is 846.11 N.