Answer:
a) The confidence interval is
.
Explanation:
We have to calculate a confidence interval (CI) of a difference of proportions.
For the existing procedure, the proportion is:
![p_1=75/1500=0.05](https://img.qammunity.org/2020/formulas/mathematics/college/j3gzy53wblwuhpjpphwir33io1fobdb1oh.png)
For the new procedure, the proportion is:
![p_2=80/2000=0.04](https://img.qammunity.org/2020/formulas/mathematics/college/hwie4pd6w2au15850wpz7f3vx8rqzfxo5w.png)
To calculate the CI, we need to estimate the standard deviation
![s=\sqrt{(p_1(1-p_1))/(n_1) +(p_2(1-p_2))/(n_2) }\\\\s=\sqrt{(0.05(1-0.05))/(1500) +(0.04(1-0.04))/(2000) }=√( 0.000032 + 0.000019 )=√( 0.000051 )\\\\s=0.007](https://img.qammunity.org/2020/formulas/mathematics/college/y12kxvzud6wnttulb78k9tetirkgfq3nt1.png)
For a 90% CI, the z-value is 1.64.
Then, the CI is:
![(p_1-p_2)-z*\sigma \leq\pi_1-\pi_2\leq(p_1-p_2)+z*\sigma \\\\(0.05-0.04)-1.64*0.007\leq\pi_1-\pi_2\leq(0.05-0.04)+1.64*0.007\\\\0.01-0.01\leq\pi_1-\pi_2\leq0.01+0.01\\\\0.00\leq\pi_1-\pi_2\leq0.02](https://img.qammunity.org/2020/formulas/mathematics/college/s6kiasn6y3ke3fuwl3h4dxzt44koulmavo.png)