Answer:
; Vertical stretch
; Horizontal compression
; Vertical compression
; Horizontal stretch
Explanation:
The given parent function is
![f(x)=3^x](https://img.qammunity.org/2020/formulas/mathematics/college/14u3p71cr9w3aev90nrungdetyp0c10bwe.png)
The transformation between two functions is defined as
![q(x)=kf(x)](https://img.qammunity.org/2020/formulas/mathematics/high-school/1pe14in6y0s2szts3hwdpwq0jyhf0ubfby.png)
If 0<k<1, then it is vertical compression and k>1 then it is vertical stretch.
![q(x)=f(jx)](https://img.qammunity.org/2020/formulas/mathematics/high-school/n3pxy8kvppwdtb76k0789voqe6q4kfg6oi.png)
If 0<j<1, then it is horizontal stretch and j>1 then it is horizontal compression.
![h(x)=4(3)^x](https://img.qammunity.org/2020/formulas/mathematics/high-school/w81ng7mf1o37kjvxdtedrimlyzo8d3cl4j.png)
![h(x)=4f(x)](https://img.qammunity.org/2020/formulas/mathematics/high-school/q8pvtv55fu11gweq33091or883qolo4bzt.png)
Here, k=4, therefore it is vertical stretch.
![g(x)=(3)^(5x)](https://img.qammunity.org/2020/formulas/mathematics/high-school/1u7nbjnam00jrzvtp7fr0l6zzxlqgvfhah.png)
![g(x)=f(5x)](https://img.qammunity.org/2020/formulas/mathematics/high-school/i95rwt810uv1z9vcsy7wqzd540em62bdps.png)
Here, j=5, therefore it is horizontal compression.
![p(x)=(1)/(2)(3)^x](https://img.qammunity.org/2020/formulas/mathematics/high-school/137clege6hsgkvm7irtx0rv4amzrci4nmx.png)
![p(x)=(1)/(2)f(x)](https://img.qammunity.org/2020/formulas/mathematics/high-school/ko0kcz3a0elrgwi50q7hc6vtyjn9glz9iv.png)
Here, k=1/2, therefore it is vertical compression.
![w(x)=(3)^(0.2x)](https://img.qammunity.org/2020/formulas/mathematics/high-school/hnrz4u3rm690bhfks9brhkngjmf5vykhbf.png)
![w(x)=f(0.2x)](https://img.qammunity.org/2020/formulas/mathematics/high-school/dho40vuj3pn87694umh1np3xaq1xcd0njp.png)
Here, j=0.2, therefore it is horizontal stretch.