Answer:
Option D) 12, 9
Explanation:
we know that
In a parallelogram opposite side are parallel and congruent
so
In the parallelogram ABCD
opposite sides are
AB and DC
BC and AD
so
AB=CD
BC=AD
step 1
Find the value of x
AB=DC
substitute the values
![x+2=22-x](https://img.qammunity.org/2020/formulas/mathematics/middle-school/kdla77kodkzwu7tbrhh6kpq5n9ahwg24za.png)
solve for x
![x+x=22-2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/5v5jwbt5mvf7502grsqiow1z4rj8nzyl19.png)
![2x=20](https://img.qammunity.org/2020/formulas/mathematics/middle-school/hup6twlcjpvkxt4tv025bvvf2t2zxfcxz8.png)
![x=10](https://img.qammunity.org/2020/formulas/mathematics/college/2sq3213sbltyysvm7zbqw6n8nzorawzxqt.png)
step 2
Find the value of side AB
![AB=x+2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/inerj4iu8nlbca25n3hyolmne2bqp1la5b.png)
substitute the value of x
![AB=10+2=12\ units](https://img.qammunity.org/2020/formulas/mathematics/middle-school/nt8kpgg8tz06r0kkzi55jvlviqse1kvcf3.png)
step 3
Find the value of y
BC=AD
substitute the values
![3y=6+y](https://img.qammunity.org/2020/formulas/mathematics/middle-school/b4rbx5kp5oy4ejkquydemdo1a4zr7aee2v.png)
solve for y
![3y-y=6](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ke49rpstzs2xu3sicm8hi4q1y0xzlap57y.png)
![2y=6](https://img.qammunity.org/2020/formulas/mathematics/high-school/54a1shjgqm0u8jh8faaujnmt8lv36rgj9a.png)
![y=3](https://img.qammunity.org/2020/formulas/mathematics/high-school/bz4oxcswmw3r7gvwn866nuoh3alxt85uy3.png)
step 4
Find the value of BC
![BC=3y](https://img.qammunity.org/2020/formulas/mathematics/middle-school/hdfjv5pnek7tmmli7xi2ktpy80iosknfm5.png)
substitute the value of y
![BC=3(3)=9\ units](https://img.qammunity.org/2020/formulas/mathematics/middle-school/1m11bil388k3uwg52m44mxhzj85mptonzz.png)
therefore
The length of the opposite side pairs are 12 and 9