Answer:
![6√(2)-30√(3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/xq79khdxt9dgpbsswbacon2o7fi326p983.png)
Explanation:
Remember that:
![(√(a))(√(b))=√(ab)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7i9dkqkuf0m97b7zmz0fkzs1731g5fez3j.png)
![\sqrt[n]{a^n}=a](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7n3agtxpmdkpp0ixo9p04d3znbyw20xqj1.png)
Given the following expression:
![(2-5√(6))(3√(2))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9mi31p5pkhkrdkfhpv90v4sxi62vep859x.png)
The steps to simplify this expression, are:
1. Apply the Distributive property:
![=(2)(3√(2))-(5√(6))(3√(2))=6√(2)-15√(12)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/exj7rd4bj5or60khuvfkko801au80e3gf5.png)
2.Since:
![12=2*2*3=2^2*3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/iw7w76rwsz39nesujp9oi9rm6lxt8s0ksk.png)
You can rewrite the radicand 12 in this form:
![=6√(2)-15√(2^2*3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ylqvdlb2y13ywyd49edk6we9tp60caliz1.png)
3. Simplifying, you get:
![=6√(2)-(15)(2)√(3)=6√(2)-30√(3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/xqy7muj7iuzmf4gn6aqrjm7y2c361xits8.png)
4. Notice that the indices of the Radicals are the same, but the radicands don't, then, you can subtract the Radicals.