Answer:
Option D.
Explanation:
The given expression is
![(x^2-x)^9](https://img.qammunity.org/2020/formulas/mathematics/middle-school/8ztsvfn5oxaxizq8o6xox1xz7nddmik8yz.png)
Here, n=9, p=x^2 adn q=-x.
kth term in the binomial expansion of
is
![T_(r)=^nC_(r-1)p^(n-r+1)q^(r-1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/1muwnahuqvk8eh8kdkc6z38va0gysu3xq7.png)
First term of the binomial expansion of
is
![T_(1)=^9C_(1-1)(x^2)^(9-1+1)(-x)^(1-1)=x^(18)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jbhaal4ldb0wr683qpk3z56kzmpxpz0djb.png)
Second term of the binomial expansion of
is
![T_(2)=^9C_(2-1)(x^2)^(9-2+1)(-x)^(2-1)=9(x^16)(-x)=-9x^(17)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/z53eklx3zi0a3wpeuna4uski34js6v6kv2.png)
Third term of the binomial expansion of
is
![T_(3)=^9C_(3-1)(x^2)^(9-3+1)(-x)^(3-1)=9(x^14)(x^2)=36x^(16)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9kbp0nflu48i9mpwy8lec479xj61nnzxyb.png)
Last or 10th term of the binomial expansion of
is
![T_(10)=^9C_(10-1)(x^2)^(9-10+1)(-x)^(10-1)=1(x^0)(-x^9)=-x^(9)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3sxza3tbr1jh5uzjcr9uancb2spqf0nxxv.png)
Therefore, the correct option is D.