119k views
1 vote
A 2.3 kg particle-like object moves in a plane with velocity components vx = 40 m/s and vy = 75 m/s as it passes through the point with (x, y) coordinates of (3.0, −4.0) m. (Express your answers in vector form.)

(a) What is its angular momentum relative to the origin at this moment?
(b) the point located at (-2.0, -2.0) m?

1 Answer

2 votes

Answer:

(a)
\overrightarrow{L}=885.5\widehat{k}

(b)
\overrightarrow{L}=1046.5\widehat{k}

Step-by-step explanation:

mass, m = 2.3 kg

vx = 40 m/s

vy = 75 m/s

(a) Angular momentum is given by


\overrightarrow{L}=\overrightarrow{r}* \overrightarrow{p}

Where, p is the linear momentum and r is the position vector about which the angular momentum is calculated.

Here,
\overrightarrow{r}=3\widehat{i}-4\widehat{j}


\overrightarrow{p}=m\overrightarrow{v}


\overrightarrow{p}=2.3\left ( 40\widehat{i}+75\widehat{j} \right )


\overrightarrow{p}= 92\widehat{i}+172.5\widehat{j}

So, the angular momentum


\overrightarrow{L}=\left ( 3\widehat{i}-4\widehat{j} \right )*\left ( 92\widehat{i}+172.5\widehat{j} \right )


\overrightarrow{L}=885.5\widehat{k}

(b) Here,
\overrightarrow{r}=(3+2)\widehat{i}+(-4+2)\widehat{j}


\overrightarrow{r}=5\widehat{i}-2\widehat{j}


\overrightarrow{L}=\left ( 5\widehat{i}-2\widehat{j} \right )*\left ( 92\widehat{i}+172.5\widehat{j} \right )


\overrightarrow{L}=1046.5\widehat{k}

User Mohammed Akdim
by
8.7k points