Answer:
The answer to your question is Perimeter = 287.3 in
Explanation:
AB = 90 in
BC = 80 in
∠B = 50
Perimeter = ?
Process
1.- We need to find AC using Law of sines
![(sin A)/(80) = (sin 50)/(90)](https://img.qammunity.org/2020/formulas/mathematics/high-school/nfhi7p29anjbzncfef6fxzjzkp52qddeth.png)
![sin A = (80)/(90) sin 50](https://img.qammunity.org/2020/formulas/mathematics/high-school/n0ozuq4env24f9yw7jrj7jzgzd7272xf2m.png)
![sin A = 0.68](https://img.qammunity.org/2020/formulas/mathematics/high-school/s7rk2p6wz0whefoh65svc608al0dy5lbep.png)
A = 42.9 ≈ 43
The sum of the internal angles in a triangle equals 180°
A + B + C = 180°
43 + B + 50 = 180
B = 180 - 43 - 50
B = 87°
![(AC)/(Sin 87) = (90)/(sin 50)](https://img.qammunity.org/2020/formulas/mathematics/high-school/f1o8e2a1agoo07sblrvvo22pd1ch3uls2t.png)
![AC = 90 (sin 87)/(sin 50)](https://img.qammunity.org/2020/formulas/mathematics/high-school/ex19wc4l60aame9io59rz9aovbykk9bfkd.png)
AC = 117.3
2.- Find the perimeter
Perimeter = AB + BC + AC
Perimeter = 90 + 80 + 117.3
Perimeter = 287.3 in