Answer:
7.67001846 km/s or 17157.38529 mph
Step-by-step explanation:
G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²
M = Mass of the Earth = 5.972 × 10²⁴ kg
m = Mass of satellite
v = Velocity of satellite
The distance between the Earth's center and the satellite is
r = 6371000+400000 = 6771000 m
As the centripetal force balances the force of gravity we have
![(mv^2)/(r)=(GMm)/(r^2)\\\Rightarrow v=\sqrt{(GM)/(r)}\\\Rightarrow v=\sqrt{(6.67* 10^(-11)* 5.972* 10^(24))/(6771000)}\\\Rightarrow v=7670.01846\ m/s=7.67001846\ km/s](https://img.qammunity.org/2020/formulas/physics/college/jx5gys6qr4b5mcm0tvyaell6dc2e7hvhx3.png)
Converting to mph
![7670.01846* (3600)/(1609.34)=17157.38529\ mph](https://img.qammunity.org/2020/formulas/physics/college/sc04w1nwi0n2li1hfsaqmatogniflbrpee.png)
The velocity of the satellite is 7.67001846 km/s or 17157.38529 mph