Answer:
Solving the quadratic equation
we get:
![\mathbf{v=0\:or\:v=(-37)/(8)}](https://img.qammunity.org/2022/formulas/mathematics/high-school/ehewfkk4z1wc0tkwuxxnc7yjmfavf5ktzt.png)
Explanation:
We need to solve the quadratic equation:
![8v^2+37v=0](https://img.qammunity.org/2022/formulas/mathematics/high-school/y6s2leohjbun8vwrj159x1pc7yoolveu75.png)
We can solve the quadratic equation of form
using quadratic formula:
![x=(-b\pm√(b^2-4ac))/(2a)](https://img.qammunity.org/2022/formulas/mathematics/college/xwoste9sb5s8xgnw06frxmsrdev3dn4cxi.png)
We need to put values of a , b and c in order to find the solutions of quadratic equations.
In the given equation:
we have, a =8, b=37, c=0
Putting values and finding the values for n:
![v=(-b\pm√(b^2-4ac))/(2a)\\v=(-37\pm√((-37)^2-4(8)(0)))/(2(8))\\v=(-37\pm√((-37)^2-0))/(2(8))\\v=(-37\pm√(1369))/(2(8))\\v=(-37\pm37)/(2(8))\\v=(-37+37)/(2(8))\:or\:v=(-37-37)/(2(8))\\v=(0)/(2(8))\:or\:v=(-74)/(2(8))\\v=0\:or\:v=(-37)/(8)](https://img.qammunity.org/2022/formulas/mathematics/high-school/xvvjcnl9n65dgf57dwykxmttddc76z7hmj.png)
So, solving the quadratic equation
we get:
![\mathbf{v=0\:or\:v=(-37)/(8)}](https://img.qammunity.org/2022/formulas/mathematics/high-school/ehewfkk4z1wc0tkwuxxnc7yjmfavf5ktzt.png)