Answer:
a. 0.000002 m
b. 0.00000182 m
Step-by-step explanation:
36 cm = 0.36 m
15 cm = 0.15 m
a) We can start by calculating the air-water pressure of the bucket submerged 20m below the water surface:
![P = \ro g h = 1000 * 10 * 20 = 200000 Pa](https://img.qammunity.org/2020/formulas/physics/college/n1ta3uymj8lrqhe8rdmmc8039m1713ota5.png)
Suppose air is ideal gas, then if the temperature stays the same, the product of its pressure and volume stays the same
![P_1V_1 = P_2V_2](https://img.qammunity.org/2020/formulas/physics/middle-school/kybibvqhba73cl6uhhzr3oc1h0pl05oaw9.png)
Where P1 = 1.105 Pa is the atmospheric pressure, V_1 is the air volume in the bucket on the suface:
![V_1 = Ah](https://img.qammunity.org/2020/formulas/physics/college/h88lwb3vkc5kc7yge7ikmew23seaspwemk.png)
As the pressure increases, the air inside the bucket shrinks. But the crossection area stays constant, so only h, the height of air, decreases:
![P_1Ah_1 = P_2Ah_2](https://img.qammunity.org/2020/formulas/physics/college/oxjt1f4x03hhhvpqmksqp1k8nl0uygddvr.png)
![h_2 = h_1(P_1)/(P_2) = 0.36(1.105)/(200000) = 0.000002 m](https://img.qammunity.org/2020/formulas/physics/college/jw12s6r2vuikyyt7u34z9satsqi0d5ys8f.png)
b) If the temperatures changes, we can still reuse the ideal gas equation above:
![(P_1Ah_1)/(T_1) = (P_2Ah_2)/(T_2)](https://img.qammunity.org/2020/formulas/physics/college/cj22klqjn0j92ra4iex9qcia5sbn8hng1c.png)
![h_2 = h_1(P_1T_2)/(P_2T_1) = 0.36(1.105 * 275)/(200000*300) =0.00000182 m](https://img.qammunity.org/2020/formulas/physics/college/ph23lmtmyd0edo2546uxu4izz9s2t6qeba.png)