Answer:
2
Step-by-step explanation:
The rotational kinetic energy of the dumbbell is:
![E_r = (1)/(2)I\omega^2](https://img.qammunity.org/2020/formulas/physics/college/fpneesvta7l5gawtkgd9ktqzmhpg3r3mso.png)
where I is the moments of inertia of the two point-like system
![I = 2Mr^2 = 2ML^2](https://img.qammunity.org/2020/formulas/physics/college/f7rvfzdqcquzev1v0czbblwgv3cri70t19.png)
![E_r = ML^2\omega^2](https://img.qammunity.org/2020/formulas/physics/college/sqcurej270ezxbvsfdm6s4wu2utrfvmoh6.png)
The translation kinetic energy is:
![E_t = (1)/(2)Mv^2 = (1)/(2)M\omega^2L^2](https://img.qammunity.org/2020/formulas/physics/college/qltpaflrs9bf1h5193rl8qdrzh5y8tsx2f.png)
Therefore the ratio of the rotational kinetic energy to the translational (linear) kinetic energy is:
![(E_r)/(E_t) = (ML^2\omega^2)/((1)/(2)M\omega^2L^2) = 2](https://img.qammunity.org/2020/formulas/physics/college/k2txrt08d97mbbzq3zbgztzvhh99qy4eym.png)