Answer:
![\Delta A=30\pi ft^2](https://img.qammunity.org/2020/formulas/mathematics/college/5lefz0k1kohtjucfbfkhf403a02ldapo6w.png)
Explanation:
The total surface area for a silo A = 3πr^2 + 2πrh.
given
base radius r, cylindrical side with height h, hemispherical cap
h=20 ft r=8 ft
Δh= 1/2 ft and Δr= 1/4 ft
now, diffrentiating we get
dA= 3π×2r×dr+2π(r×dh+Δr×h)
putting values we get
![\Delta A= 6\pi\Delta r+2\pi r\Delta h+2\pi h \Delta r](https://img.qammunity.org/2020/formulas/mathematics/college/2uaqmxhbptlmlljccg12vwj0zyrclhhxmy.png)
![\Delta A= (6\pi\ r+2\pi h)\Delta r+2\pi r \Delta h](https://img.qammunity.org/2020/formulas/mathematics/college/iuw0nzy1ywbzjpqej32wesh7bzercu6s1x.png)
![\Delta A= (6\pi\ 8+2\pi 20)\(1/4)+2\pi 8(1/2)](https://img.qammunity.org/2020/formulas/mathematics/college/752rwkjlf5yuvyl5m94u4t6etrepe45zx9.png)
solving the above equation we get
![\Delta A=30\pi](https://img.qammunity.org/2020/formulas/mathematics/college/m5fv3suhx4olxq1msymoz4isojykfoyw84.png)