171k views
5 votes
Acetylene gas (ethyne; HC≡CH) burns with oxygen in an oxyacetylene torch to produce carbon dioxide, water vapor, and the heat needed to weld metals. The heat of combustion for acetylene is −1259 kJ/mol. Calculate the C≡C bond energy.

1 Answer

4 votes

Answer:

Approximately
\rm 810\; kJ \cdot mol^(-1).

Assumption:
-1259\; \rm kJ \cdot mol^(-1) measures the enthalpy change of the reaction
\displaystyle \rm C_2H_2\, (g) + (5)/(2)\, O_2\, (g) \to 2\, CO_2\, (g) + H_2O\, (\textbf{g}) where the water is in its gaseous state (as "water vapor.")

Step-by-step explanation:

The heat of combustion of a substance gives the enthalpy change when one mole of that substance reacts with excess oxygen.

Start by balancing the equation for the complete combustion of ethyne
\rm \text{H-C $\equiv$ C-H} in oxygen
\rm O_2\, (g).


\displaystyle \rm 2 \, C_2H_2\, (g) + 5\, O_2\, (g) \to 4\, CO_2\, (g) + 2\, H_2O\, (g).

Set coefficient of
\rm \text{H-C $\equiv$ C-H} should be equal to one. Simply divide all coefficients by the coefficient of
\rm \text{H-C $\equiv$ C-H}.


\displaystyle \rm C_2H_2\, (g) + (5)/(2)\, O_2\, (g) \to 2\, CO_2\, (g) + H_2O\, (\textbf{g}).

The enthalpy change of a reaction like this one is equal to

  • The energy of bonds broken, minus
  • The energy of bonds formed.

If the energy of bonds formed is greater than that of the bonds broken, the reaction would be exothermic and
\Delta H should be negative.

In each mole of this reaction, bonds broken include:


  • 2 * \rm C - H bonds,

  • 1 * \rm C\equiv C bond, and

  • (5)/(2)* \rm O=O bonds.

In each mole of this reaction, bonds formed include:


  • 2 * 2* \rm C=O bonds (each
    \rm CO_2 molecule contains two such bonds,) and

  • 2 * \rm H-O bonds.

Hence


\begin{aligned}& \Delta H \cr =&E(\text{Bonds Broken}) - E(\text{Bonds Formed}) \cr =& 2* E(\rm C-H) + E(\rm C\equiv C) + (5)/(2) * E(\rm O=O)\cr & \phantom{=} - 2 * E(\rm C=O) - E(\rm H-O) \end{aligned}.

Rewrite the equation to isolate the unknown
E(\rm C\equiv C):


\begin{aligned}& E(\rm C\equiv C) \cr = &\Delta H - 2* E(\rm C-H) - (5)/(2) * E(\rm O=O) \cr &\phantom{=} + 2 * E(\rm C=O) + E(\rm H-O) \end{aligned}.

Look up the bond energy for these bonds (except for the unknown carbon-carbon triple bond)


\begin{aligned}& E(\rm C\equiv C) \cr = &\Delta H - 2* E(\rm C-H) - (5)/(2) * E(\rm O=O) \cr &\phantom{=} + 2 * E(\rm C=O) + E(\rm H-O) \cr =& (-1259) + (2 * 2 * (804) + 2 * (463)) \cr &\phantom{=}- (2 * 414 + 5/2 * 498)\cr =& 810\, \rm kJ \cdot mol^(-1)\end{aligned}.

User Drashti Kheni
by
5.8k points