21.2k views
0 votes
Choose the correct vertex of the function f(x) = x2 - X + 2.

User Chavy
by
8.4k points

1 Answer

5 votes

Answer:


\large\boxed{\left((1)/(2),\ (7)/(4)\right)}

Explanation:

The vertex form of an equation of a parabola f(x) = ax² + bx + c:


f(x)=a(x-h)^2+k

(h, k) - vertex

METHOD 1:


h=(-b)/(2a),\ k=f(h)\\\\f(x)=x^2-x+2\to a=1,\ b=-1,\ c=2\\\\h=(-(-1))/((2)(1))=(1)/(2)\\\\k=f\bigg((1)/(2)\bigg)=\left((1)/(2)\right)^2-(1)/(2)+2=(1)/(4)-(1)/(2)+2=(1)/(4)-(1\cdot2)/(2\cdot2)+2\\\\=(1)/(4)-(2)/(4)+2=-(1)/(4)+2=1(3)/(4)=(7)/(4)\\\\\boxed{\left((1)/(2),\ (7)/(4)\right)}

METHOD 2:


\text{use}\ (a-b)^2=a^2-2ab+b^2\qquad(*)\\\\f(x)=x^2-x+2=\underbrace{x^2-2(x)\left((1)/(2)\right)+\left((1)/(2)\right)^2}_((*))-\left((1)/(2)\right)^2+2\\\\=\left(x-(1)/(2)\right)^2-(1)/(4)+2=\left(x-(1)/(2)\right)^2+1(3)/(4)=\left(x-(1)/(2)\right)^2+(7)/(4)\\\\h=(1)/(2),\ k=(7)/(4)\\\\\boxed{\left((1)/(2),\ (7)/(4)\right)}

User Artem Zankovich
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories