Answer:
Mean, x: 7
standard deviation(s)=0.4944
t=-3.1980
Explanation:
given data
7.4 7.0 6.5 7.4 7.6 6.2 6.9 7.6 6.5 6.9
Count, N: 10
Sum, Σx: 70
Mean, x: 7
Variance, s2: 0.24444444444444
Steps
s2 =
![(∑(xi - x)2)/(N - 1)](https://img.qammunity.org/2020/formulas/mathematics/college/cwdlq32klupe9mfzxsyhhxcjrmtw9bx24a.png)
=
![((7.4 - 7)2 + ... + (6.9 - 7)2)/(10-1)](https://img.qammunity.org/2020/formulas/mathematics/college/l9hm2bxh8fo3mucbh509f8junmf2uzh5cb.png)
=
=0.24444444444444
s =
⇒s= 0.49441323247304
⇒s=0.4944
b) H0: μ = 7.5 versus Ha: μ < 7.5.
α = 0.01.
t=
![(x-u)/((s)/(√(n) ) )](https://img.qammunity.org/2020/formulas/mathematics/high-school/6gosgt965rb8re1g7jt0e37jlplt00kjvc.png)
t=
![(7-7.5)/((0.4944)/(√(10) ) )](https://img.qammunity.org/2020/formulas/mathematics/college/k38proj2pxlz0ndaqfz1kan8zbkr7l185s.png)
t=-3.1980
for 9 df and α = 0.01
t stat from table is -2.82
as t test is less than t
we reject the null hypothesis