181k views
5 votes
Find f'(x) from the function

Find f'(x) from the function-example-1

1 Answer

4 votes

Answer:

f'(x)=
\frac{-x}{\sqrt{25-x^(2)} } for (-5)<x<5

Explanation:

The given function is f(x)=
\sqrt{25-x^(2) } for
-5\leq x\leq 5

To find f'(x):

We know that
(d)/(dx) √(x) =(1)/(2√(x))

Now,

f'(x)=
(d)/(dx)\sqrt{25-x^(2) }


f'(x)=\frac{1}{2\sqrt{25-x^(2)} } (d)/(dx) (25-x^(2))\\f'(x)=\frac{}{2\sqrt{25-x^(2)} } (0-2x)\\f'(x)=\frac{-2x}{2\sqrt{25-x^(2)} }\\f'(x)=\frac{-x}{\sqrt{25-x^(2)} }

Such that for x=5 or x=(-5), f'(x) is indefinite

Thus,

f'(x)=
\frac{-x}{\sqrt{25-x^(2)} } for (-5)<x<5

User Dorje
by
5.5k points