Answer: The value of
is 0.044
Step-by-step explanation:
We are given:
Initial moles of methane =
![4.10* 10^(-2)mol=0.0410moles](https://img.qammunity.org/2020/formulas/chemistry/college/ua6qonbyigcbwyhtbte4lfqp1bqqqr6hfk.png)
Initial moles of carbon tetrachloride =
![6.51* 10^(-2)mol=0.0651moles](https://img.qammunity.org/2020/formulas/chemistry/college/k11j5gohwkj6yx72drgmq46kh2s398l2pj.png)
Volume of the container = 1.00 L
Concentration of a substance is calculated by:
![\text{Concentration}=\frac{\text{Number of moles}}{\text{Volume}}](https://img.qammunity.org/2020/formulas/chemistry/college/hyqscd16uj162l7hsi81lpyve444tx08h9.png)
So, concentration of methane =
![(0.0410)/(1.00)=0.0410M](https://img.qammunity.org/2020/formulas/chemistry/college/q8xttyas8sb6sd8k7av5axbl3u804yx69l.png)
Concentration of carbon tetrachloride =
![(0.0651)/(1.00)=0.0651M](https://img.qammunity.org/2020/formulas/chemistry/college/ibt59yj35kn6vsstt30u8teelhjf0n1k32.png)
The given chemical equation follows:
![CH_4(g)+CCl_4(g)\rightleftharpoons 2CH_2Cl_2(g)](https://img.qammunity.org/2020/formulas/chemistry/college/25eikwgi4dcx3h6k75rjhhbombqklui19w.png)
Initial: 0.0410 0.0651
At eqllm: 0.0410-x 0.0651-x 2x
We are given:
Equilibrium concentration of carbon tetrachloride =
![6.02* 10^(-2)M=0.0602M](https://img.qammunity.org/2020/formulas/chemistry/college/r6fmdu8kchd6t1vpf0ndlts2w7wca5zx27.png)
Evaluating the value of 'x', we get:
![\Rightarrow (0.0651-x)=0.0602\\\\\Rightarrow x=0.0049M](https://img.qammunity.org/2020/formulas/chemistry/college/mxozwzspn6ld1y2pawh4erzmtxkagz0zz9.png)
Now, equilibrium concentration of methane =
![0.0410-x=[0.0410-0.0049]=0.0361M](https://img.qammunity.org/2020/formulas/chemistry/college/jonluxhnntcz4ljum2mcq6mn2b8c6s3h5p.png)
Equilibrium concentration of
![CH_2Cl_2=2x=[2* 0.0049]=0.0098M](https://img.qammunity.org/2020/formulas/chemistry/college/m4dk1ecv1jkr28fdhx8f93yh3wil39i09j.png)
The expression of
for the above reaction follows:
![K_(eq)=([CH_2Cl_2]^2)/([CH_4]* [CCl_4])](https://img.qammunity.org/2020/formulas/chemistry/college/xdo989ro9750ngs9c6h1hi2ckuczl13btr.png)
Putting values in above expression, we get:
![K_(eq)=((0.0098)^2)/(0.0361* 0.0603)\\\\K_(eq)=0.044](https://img.qammunity.org/2020/formulas/chemistry/college/gtw7ng53rzqwehe6bprfmo16fejv7uq1q7.png)
Hence, the value of
is 0.044