Answer:
(a). The density of the wood is
![1479.48*10^(2)\ Kg/m^3](https://img.qammunity.org/2020/formulas/physics/college/g2wbbvz6ldehnq0sow1cos7q0746kzjsq8.png)
(b). The absolute pressure at the bottom of the tank is
.
Step-by-step explanation:
Given that,
Side of cube = 15.0 cm
Depth = 50 cm
Tension = 6.615 N
We need to calculate the volume of the wood
Using formula of volume
![V = a^3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/nwbqwf7q5eb83ntl996xuzbu48oyg5dcmx.png)
![V=(15.0*10^(-2))^3](https://img.qammunity.org/2020/formulas/physics/college/lt0k3xqut9yhm9bwli1dgr0waodg31ci0g.png)
We need to calculate the density of the wood
Using buoyant force
![\rho_(w)gh=mg+T](https://img.qammunity.org/2020/formulas/physics/college/enaw26fy4zooa5g2pxrm6xekchllmu4uw4.png)
![\rho_(w)gh=\rho_(c)Vg+T](https://img.qammunity.org/2020/formulas/physics/college/c4q12sr23s8s1lwjfsu5lqurmu0sv3xlb5.png)
Put the value into the formula
![\rho_(c)=(\rho_(w)gh-T)/(Vg)](https://img.qammunity.org/2020/formulas/physics/college/856p8bn5sznl2u04l8iz26hh61jro7f206.png)
Put the value into the formula
![\rho_(c)=(1000*9.8*50*10^(-2)-6.615)/(0.003375*9.8)](https://img.qammunity.org/2020/formulas/physics/college/9ehpawf1y4t3oageo55ky8v5grrqossej9.png)
![\rho_(c)=1479.48*10^(2)\ Kg/m^3](https://img.qammunity.org/2020/formulas/physics/college/gl4pbbm8acrxno8h801xmx2y87u3rzj1wr.png)
(b). We need to calculate the absolute pressure at the bottom of the tank
Using formula of absolute pressure
![P=P_(atm)+\rho gh](https://img.qammunity.org/2020/formulas/physics/college/ic6ka7usfeimqz04yy8gqeeaggfld0jg73.png)
Put the value into the formula
![P=1.013*10^(5)+1000*9.8*0.5](https://img.qammunity.org/2020/formulas/physics/college/dln0dgdyknc550dx4wz64wuc3oqzwe2ezh.png)
![P=1.06200*10^(5)\ Pa](https://img.qammunity.org/2020/formulas/physics/college/ev4czmfsqzmf1rdp9diq3x5fotfra8phaf.png)
Hence, (a). The density of the wood is
![1479.48*10^(2)\ Kg/m^3](https://img.qammunity.org/2020/formulas/physics/college/g2wbbvz6ldehnq0sow1cos7q0746kzjsq8.png)
(b). The absolute pressure at the bottom of the tank is
.