75.0k views
2 votes
How can the logarithmic expression be rewritten? Select True or False for each statement.

How can the logarithmic expression be rewritten? Select True or False for each statement-example-1

1 Answer

4 votes

Answer:


1. log_3(cd)^4  = 4 log_3(c )+ log_3(d) FALSE


2. (2)/(3) (ln(a) +ln(b)) =  ln(\sqrt[3]{a^2b^2} ) TRUE


3.ln((e^3)/(f) )  = 3 ln(e) - ln (f) TRUE

Explanation:

Here, let us first state the logarithmic rules.


log (a) - log (b)  =log((a)/(b) )\\log (ab)   = log a + log b\\log(a^m) = m * log (a)

Now, here the given expressions are:


1. log_3(cd)^4  = 4 log_3(c )+ log_3(d)

The given statement is FALSE as:


log_3(cd)^4   = 4 log_3(cd)  = 4log_3(c) + 4log_3(d)


2. (2)/(3) (ln(a) +ln(b)) =  ln(\sqrt[3]{a^2b^2} )


(2)/(3) (ln(a) +ln(b))  =  (2)/(3) ln(ab)   =  ln(ab) ^(2)/(3)  \\= ln(\sqrt[3]{a^2b^2} )\\\implies(2)/(3) (ln(a) +ln(b)) =  ln(\sqrt[3]{a^2b^2} )

The given statement is TRUE .


3.ln((e^3)/(f) )  = 3 ln(e) - ln (f)

The given statement is TRUE as:


ln((e^3)/(f) )  =   ln(e^3) - ln (f)   =  3 ln(e) - ln (f)

User Enricopulatzo
by
8.7k points