Answer:
∴
![\tan \theta = -(3)/(4)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/448fzunxcj3smttmlhyxin0a1gv29f61u9.png)
Explanation:
Let the triangle name as Δ ABO a right triangle at ∠ B =90°
Such that,
OA = radius
AB = y coordinate = 12
BO = x coordinate = 16 (positive because distance cannot be in negative)
To Find:
![\tan \theta=?](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jw8iuzvd2mwmtjz82o9gzh3k8qktd8bx3s.png)
Solution:
In right triangle Δ ABO ,By Pythagoras theorem we get the radius,
![(\textrm{Hypotenuse})^(2) = (\textrm{Shorter leg})^(2)+(\textrm{Longer leg})^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/zzqkt74bo8i0g39uk3gex0h5896knh6wio.png)
![r^(2) = 16^(2)+12^(2)\\\\r^(2) =400\\\therefore r = 20\ units](https://img.qammunity.org/2020/formulas/mathematics/middle-school/57p0qhqip6pf8tnjephp8p0unthn41bs05.png)
∴ OA = 20
OB = 16
Also tan (180 -θ) = - tan (θ)
Now In right triangle Δ ABO
m∠ AOB = 180 -θ
∴
![\tan (\angle AOB) = \frac{\textrm{side opposite to angle AOB}}{\textrm{side adjacent to angle AOB}}\\\\\tan (180 -\theta) = (AB)/(OB)\\\\-\tan \theta =(12)/(16) \\\\\tan \theta = -(3)/(4)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/pnsybehw2ouryyjsuoefrpj31kwfrdnfbs.png)
∴
![\tan \theta = -(3)/(4)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/448fzunxcj3smttmlhyxin0a1gv29f61u9.png)