Answer: The standard Gibbs free energy change of the reaction is -32.9 kJ
Step-by-step explanation:
For the given chemical equation:
![N_2(g)+3H_2(g)\rightarrow 2NH_3(g)](https://img.qammunity.org/2020/formulas/chemistry/college/nynl55bc6le623fyt3btjv3pv4oz3lgkfj.png)
- The equation for the enthalpy change of the above reaction is:
![\Delta H^o_(rxn)=[(2* \Delta H^o_f_((NH_3(g))))]-[(1* \Delta H^o_f_((N_2(g))))+(3* \Delta H^o_f_((H_2(g))))]](https://img.qammunity.org/2020/formulas/chemistry/college/ak1bj22hjkcb81gu6jsousvu6cpxqdbf6x.png)
We are given:
![\Delta H^o_f_((N_2(g)))=0.00kJ/mol\\\Delta H^o_f_((H_2(g)))=0.00kJ/mol\\\Delta H^o_f_((NH_3(g)))=-46.0kJ/mol](https://img.qammunity.org/2020/formulas/chemistry/college/sfomgy92ehsb9m9fh7nwol0ofoswchmfn7.png)
Putting values in above equation, we get:
![\Delta H^o_(rxn)=[(2* (-46.0))]-[(1* 0)+(3* 0)]=-92kJ=-92000J](https://img.qammunity.org/2020/formulas/chemistry/college/fmlqwc6anno6lgl9luqipbk7ftc25hbn77.png)
- The equation for the entropy change of the above reaction is:
![\Delta S^o_(rxn)=[(2* \Delta S^o_((NH_3(g))))]-[(1* \Delta S^o_((N_2(g))))+(3* \Delta S^o_((H_2(g))))]](https://img.qammunity.org/2020/formulas/chemistry/college/89rpi44zkjjkq8d837csqq3c33c3rzbw8o.png)
We are given:
![\Delta S^o_((N_2(g)))=+191.5J/mol.K\\\Delta S^o_((H_2(g)))=+130.6J/mol.K\\\Delta S^o_((NH_3(g)))=+192.5J/mol.K](https://img.qammunity.org/2020/formulas/chemistry/college/qh8m1943rcnfo3qyts95kiotev40er74q7.png)
Putting values in above equation, we get:
![\Delta S^o_(rxn)=[(2* (192.5))]-[(1* (191.5))+(3* (130.6))]=-198.3J/K](https://img.qammunity.org/2020/formulas/chemistry/college/m0x4vf61ecbsmzm6zpiatsn7onz4u9cgus.png)
- To calculate the standard Gibbs free energy of the reaction, we use the equation:
![\Delta G^o=\Delta H^o-T\Delta S^o](https://img.qammunity.org/2020/formulas/physics/college/q733rzz99ib701vwnipbrxgelz31hwrk21.png)
where,
= standard enthalpy change = -92000 J
T = Temperature =
![25^oC=[273+25]K=298K](https://img.qammunity.org/2020/formulas/chemistry/college/6roip9my7lmduj9zgvg2iw8f5svzc0eagc.png)
= standard entropy of the reaction = -198 J/K
Putting values in above equation, we get:
![\Delta G^o=-92000J-(298K* (-198J/K))\\\\\Delta G^o=-32996J=-32.9kJ](https://img.qammunity.org/2020/formulas/chemistry/college/hnmkot8y1pw24e0ga75lrofk28sol0l0ja.png)
Hence, the standard Gibbs free energy change of the reaction is -32.9 kJ