Answer:
Value of
for the given reaction is 7.7
Step-by-step explanation:
![Ag_(2)CO_(3)(s)\rightleftharpoons 2Ag^(+)(aq.)+CO_(3)^(2-)(aq.)](https://img.qammunity.org/2020/formulas/chemistry/college/vm056hezec1563w5ncrbo8nc4bfn6lo2px.png)
![K_(sp)(Ag_(2)CO_(3))=[Ag^(+)]^(2)[CO_(3)^(2-)]](https://img.qammunity.org/2020/formulas/chemistry/college/qu09rohnkg5r8dolc61xkhdvphgsgtt41p.png)
![Ag_(2)CrO_(4)(s)\rightleftharpoons 2Ag^(+)(aq.)+CrO_(4)^(2-)(aq.)](https://img.qammunity.org/2020/formulas/chemistry/college/8kfvc926jixjkumqxi97hmkwzejtv4bt4d.png)
![K_(sp)(Ag_(2)CrO_(4))=[Ag^(+)]^(2)[CrO_(4)^(2-)]](https://img.qammunity.org/2020/formulas/chemistry/college/4sjx1x0tior7ep70oml8tv24gpnmdvoxqz.png)
Where
represents solubility product
For the given reaction,
(concentration of pure solids remain constant during reaction. Hence their concentration is taken as 1 to exclude them from equilibrium constant expression)
So,
![K_(c)=([Ag^(+)]^(2)[CO_(3)^(2-)])/([Ag^(+)]^(2)[CrO_(4)^(2-)])](https://img.qammunity.org/2020/formulas/chemistry/college/c25dn2sb6qir04jfw8eysmqe75m54rpk0i.png)
or,
![K_(c)=(K_(sp)(Ag_(2)CO_(3)))/(K_(sp)(Ag_(2)CrO_(4)))=(8.5* 10^(-12))/(1.1* 10^(-12))=7.7](https://img.qammunity.org/2020/formulas/chemistry/college/o29la3em50u4z9iknsq3yugxpubq71wtq5.png)
Hence option (B) is correct