78,989 views
38 votes
38 votes
If α =i+j−2k, β =−i+2j+3k andγ =5i+8k, then find c and d such that γ−cα−dβ is perpendicular to both α and β

User Facebook
by
2.8k points

1 Answer

8 votes
8 votes

If
\hat\gamma-c\hat\alpha-d\hat\beta is perpendicular to both
\hat\alpha and
\hat\beta, then their dot products are zero.

Recall that for any vector
\hat x,
\hat x\cdot \hat x = \|\hat x\|^2.

Now, we have


(\hat\gamma - c\hat\alpha - d\hat\beta) \cdot \hat\alpha = (\hat\gamma\cdot\hat\alpha) - c\|\hat\alpha\|^2 - d (\hat\beta\cdot\hat\alpha) = 0


\hat\gamma\cdot\hat\alpha = 5 + 0 - 16 = -11


\|\hat\alpha\|^2 = 1^2 + 1^2 + (-2)^2 = 6


\hat\beta\cdot\hat\alpha = -1 + 2 - 6 = -5


\implies 6c - 5d = -11

and


(\hat\gamma - c\hat\alpha - d\hat\beta) \cdot \hat\beta = (\hat\gamma\cdot\hat\beta) - c(\hat\alpha\cdot\hat\beta) - d \|\hat\beta\|^2 = 0


\hat\gamma\cdot\hat\beta = -5 + 0 + 24 = 19


\|\hat\beta\|^2 = (-1)^2 + 2^2 + 3^2 = 14


\implies 5c - 14d = -19

Solve for
c and
d. By elimination,


5(6c - 5d) - 6(5c - 14d) = 5(-11) - 6(-19)


-25d + 84d = -55 + 104


59d = 59


\boxed{d=1}


6c-5 = -11


6c=-6


\boxed{c=-1}