Answer:
1) True 2) False
Explanation:
1) Given
![\sum\limits_(k=0)^8(1)/(k+3)=\sum\limits_(i=3)^(11)(1)/(i)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/6j3trdm9066y4vwed4yhfkbdwsvm8wn8ef.png)
To verify that the above equality is true or false:
Now find
![\sum\limits_(k=0)^8(1)/(k+3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/js9uu1fwy145bk2hi2d9kaaznvon3u9fl1.png)
Expanding the summation we get
![\sum\limits_(k=0)^8(1)/(k+3)=(1)/(3)+(1)/(4)+(1)/(5)+(1)/(6)+(1)/(7)+(1)/(8)+(1)/(9)+(1)/(10)+(1)/(11)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/o3nqsnjsgg64i6bpd6z8rsw9uukc1ewfml.png)
Now find
![\sum\limits_(i=3)^(11)(1)/(i)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/pj344k143d56b62hzhx90qcrqcld1xzp43.png)
Expanding the summation we get
Comparing the two series we get,
so the given equality is true.
2) Given
![\sum\limits_(k=0)^4(3k+3)/(k+6)=\sum\limits_(i=1)^3(3i)/(i+5)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3kqfbfu5vz2fcbsasn3z8az6vw332zqtzf.png)
Verify the above equality is true or false
Now find
![\sum\limits_(k=0)^4(3k+3)/(k+6)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/k16dgv54kbc4lj7af9hc3mvypkdhvh35ok.png)
Expanding the summation we get
![\sum\limits_(k=0)^4(3k+3)/(k+6)=(3(0)+3)/(0+6)+(3(1)+3)/(1+6)+(3(2)+3)/(2+6)+(3(3)+4)/(3+6)+(3(4)+3)/(4+6)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/yw20ctntytxy3wc8h0xvf5pwdy8m5zshmi.png)
![\sum\limits_(k=0)^4(3k+3)/(k+6)=(3)/(6)+(6)/(7)+(9)/(8)+(12)/(8)+(15)/(10)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/1u02f53ebdepptj8ht5t2i9rf8ulfnhmci.png)
now find
![\sum\limits_(i=1)^3(3i)/(i+5)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/v9ahn68bz25gla3px4yw9o9xnlujjhbalk.png)
Expanding the summation we get
![\sum\limits_(i=1)^3(3i)/(i+5)=(3(0))/(0+5)+(3(1))/(1+5)+(3(2))/(2+5)+(3(3))/(3+5)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/s3tsz8gew38ii14pwkqu90tsw2dbql2tq8.png)
![\sum\limits_(i=1)^3(3i)/(i+5)=(3)/(6)+(6)/(7)+(9)/(8)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ne140f24gr5h9yg16tzgg59m57v19d25fh.png)
Comparing the series we get that the given equality is false.
ie,
![\sum\limits_(k=0)^4(3k+3)/(k+6)\\eq\sum\limits_(i=1)^3(3i)/(i+5)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/kvowai1rl59vhr1h3jjo79h2egjcy5fww9.png)