Answer:
The function touches the damping factor
at x=
and x=
![((4n-1)\pi)/(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/avy9vruqtt6e2t68aaxy7oig4p1mr8qjya.png)
The x-intercept of f(x) is
at x=
![n\pi](https://img.qammunity.org/2020/formulas/mathematics/middle-school/avgdw7fy7b00f4cycfnjif27iro0pnwp2h.png)
Explanation:
Given function is f(x)=
and damping factor as y=
and y=
To find when function touches the damping factor:
For f(x)=
and y=
![e^(-3x)](https://img.qammunity.org/2020/formulas/mathematics/high-school/j35yht9mrwp86ifls54gu0kc5anxyqtkxb.png)
Equating the both the equation,
![e^(-3x) sin(x)=e^(-3x)](https://img.qammunity.org/2020/formulas/mathematics/high-school/c80j23km2qatidd563nq0djmqqjc3qt8uu.png)
![sin(x)=1](https://img.qammunity.org/2020/formulas/mathematics/high-school/b7476beisvtgtmno0pak73thmfss8n383z.png)
x=
![((4n-3)\pi)/(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/134ay2mdszwubrnuv3rowqyjm5o4c802ce.png)
For f(x)=
and y=
![(-1)e^(-3x)](https://img.qammunity.org/2020/formulas/mathematics/high-school/ttu8g4z4luczunmprrt2ns6f44bhiogwdr.png)
Equating the both the equation,
![e^(-3x) sin(x)=(-1)e^(-3x)](https://img.qammunity.org/2020/formulas/mathematics/high-school/2hf5sddrkwlwxffm7peu8v5ia5dq63eqrc.png)
![sin(x)=(-1)](https://img.qammunity.org/2020/formulas/mathematics/high-school/6dmae29e472sf9fdw0327h1428a6bykhzd.png)
x=
![((4n-1)\pi)/(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/avy9vruqtt6e2t68aaxy7oig4p1mr8qjya.png)
Therefore, The function touches the damping factor x=
and x=
![((4n-1)\pi)/(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/avy9vruqtt6e2t68aaxy7oig4p1mr8qjya.png)
To find x-intercept of f(x):
For x-intercept, y=0
f(x)=
![e^(-3x) sin(x)](https://img.qammunity.org/2020/formulas/mathematics/high-school/71jzqlij2r1dqya221rdjl1352670zwkk1.png)
y=
![e^(-3x) sin(x)](https://img.qammunity.org/2020/formulas/mathematics/high-school/71jzqlij2r1dqya221rdjl1352670zwkk1.png)
![e^(-3x) sin(x)=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/mklsim3u0hg5a7p1xy20gj5zp2cx1jwmo6.png)
Hence,
is always greater than zero.
Therefore,
![sin(x)=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/lfkz6nxxv8gwririw3gbg4kqdtdq9vcran.png)
x=
![n\pi](https://img.qammunity.org/2020/formulas/mathematics/middle-school/avgdw7fy7b00f4cycfnjif27iro0pnwp2h.png)
Thus,
The x-intercept of f(x) is at x=
![n\pi](https://img.qammunity.org/2020/formulas/mathematics/middle-school/avgdw7fy7b00f4cycfnjif27iro0pnwp2h.png)