Answer:
0.6210
Explanation:
Given that a Food Marketing Institute found that 39% of households spend more than $125 a week on groceries
Sample size n =87
Sample proportion will follow a normal distribution with p =0.39
and standard error =
![\sqrt{(0.39(1-0.39))/(87) } \\=0.0523](https://img.qammunity.org/2020/formulas/mathematics/high-school/wn3vaz2oocyeimkqk6u1mp9m74w0yrws5e.png)
the probability that the sample proportion of households spending more than $125 a week is between 0.29 and 0.41
=
![P(0.29<p<0.41)\\\\ =0.64892-0.02794\\=0.6210](https://img.qammunity.org/2020/formulas/mathematics/high-school/6d3byse9b4rilurfsaanp13szckg90vfhi.png)
There is 0.6210 probability that the sample proportion of households spending more than $125 a week is between 0.29 and 0.41