Answer:
The angle is
![62.88^(\circ)](https://img.qammunity.org/2020/formulas/physics/college/99yh1tdp0yi2r7olghc2twzwsx5zo2rj42.png)
Solution:
As per the question:
Intensity of the linearly polarized light, I =
![900\ W/m^(2)](https://img.qammunity.org/2020/formulas/physics/college/xupithsjixf0vvq1oa45ufsuv5cln0znvv.png)
Intensity transmitted, I' =
![187\ W/m^(2)](https://img.qammunity.org/2020/formulas/physics/college/r8gp9x44n1s1ezpctnvjhd1obdn8gfmyko.png)
Now,
To calculate the angle between the polarization direction of the eye and that of the incident light:
![I' = Icos^(2)\theta](https://img.qammunity.org/2020/formulas/physics/college/ifs72835gxelvikhng79ju84yb0yrpismi.png)
Thus Rearranging the eqn for the angle and using the suitable values in the above eqn:
![\theta = cos^(- 1)(0.4558) = 62.88^(\circ)](https://img.qammunity.org/2020/formulas/physics/college/oq03tjo5uodcspj6pc928ej3am1nxdicr9.png)