Area of rectangle is increasing at 140 cm²/s when the length is 20 cm and the width is 10 cm.
Explanation:
Area = Length x Width
A = LW
Differentiating with respect to time
![(dA)/(dt)=L(dW)/(dt)+W(dL)/(dt)](https://img.qammunity.org/2020/formulas/mathematics/high-school/avdpqf2w4q2mdaxc2jtyr8r1e84t3m4x97.png)
Length, L = 20 cm
Width, W = 10 cm
![(dW)/(dt)=3cm/s\\\\(dL)/(dt)=8cm/s](https://img.qammunity.org/2020/formulas/mathematics/high-school/nnt20bvuyzwpmdr244jol58x9cez0189sg.png)
Substituting
![(dA)/(dt)=20* 3+10* 8\\\\(dA)/(dt)=60+80\\\\(dA)/(dt)=140cm^2/s](https://img.qammunity.org/2020/formulas/mathematics/high-school/kc78evuhz6cszkgsch4vo7citx5c238a30.png)
Area of rectangle is increasing at 140 cm²/s when the length is 20 cm and the width is 10 cm.