Answer:
The range is [9,-3,-9]
Explanation:
we have the relation
![3x+y=3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/w0nmsgeb34v9gdsuj0pxt09o9o7yf4fkv5.png)
To find the range determine the value of y for each value of x in the relation
so
For x=-2
substitute in the equation
![3(-2)+y=3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3a0077meufmmzjjt1uvslqyjrqq50gh48g.png)
![-6+y=3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/j02vyz8pham069kxa775c9fiz0upo8yjht.png)
![y=9](https://img.qammunity.org/2020/formulas/mathematics/high-school/lbe7cetkyupszfsu17lale83fwrr9twib5.png)
For x=2
substitute in the equation
![3(2)+y=3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/st2fzax64jewusk8tgghm08cuc58eqping.png)
![6+y=3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/zaanf7n2how6v6pnppt7w1xp6pzry4w3fy.png)
![y=-3](https://img.qammunity.org/2020/formulas/mathematics/high-school/9rz7wwbouodmscdyqprkefo0v4oe2sy2qa.png)
For x=4
substitute in the equation
![3(4)+y=3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2u981l9jjrsefpy9uxujovaqsjses234ho.png)
![12+y=3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/558emsuzi8rcyiisiytcvfxtdlvxl3shhs.png)
![y=-9](https://img.qammunity.org/2020/formulas/mathematics/middle-school/nj8nmk1r6o8ya41zu09199gf1tdd6gcvbr.png)
therefore
The range is [9,-3,-9]