Answer:
150 ft x 300 ft
Explanation:
Let x be the length of each of the two sides perpendicular to the river and y be the length of the size parallel to the river.
The total length of fencing is given by:
![2x+y=600\\y= 600-2x](https://img.qammunity.org/2020/formulas/mathematics/college/y2cg30eudnscsbfls0eijp4hmz5ix8u19b.png)
The area of rectangular pen is:
![A = xy\\A=x(600-2x)\\A= 600x -2x^2](https://img.qammunity.org/2020/formulas/mathematics/college/6sa4h4ws77hjs64vm2xiqyq5cbnu47gz20.png)
Finding the value of x for which the derivative of the area function is zero gives us the value of x needed to maximize the area:
![(dA(x))/(dx) =(d(600x -2x^2))/(dx)\\0= 600 - 4x\\x= 150](https://img.qammunity.org/2020/formulas/mathematics/college/9rv2zdq79o6em1mu57e5oxjnoijn45xue9.png)
For x=150, the value of y is:
![y= 600-2x=600-(2*150)\\y=300](https://img.qammunity.org/2020/formulas/mathematics/college/i2zwh9u0bbf29217qu6sab21hlbq29ox7z.png)
The dimensions that maximize the area are 150 ft x 300 ft.