Answer:
To form 100 lb of the mixture we need 25 lbs of $9 coffee beans and 75 lbs of $15 coffee beans.
Explanation:
Let x be the number of pounds of $9 coffee beans and y be the number of pounds of $15 coffee beans.
We know that the mixture must weigh 100 lb
![x+y=100](https://img.qammunity.org/2020/formulas/mathematics/high-school/ddfbh6m9r0k12de7xhv6c8crf0vqwhrhkw.png)
and the total cost per pound is given by
![9x+15y=13.50\cdot 100\\9x+15y=1350](https://img.qammunity.org/2020/formulas/mathematics/high-school/3g7mp1qplj8u3ndt3ijg7pfh4p8evtd6qu.png)
Now, we can solve the system of equations
![\begin{bmatrix}x+y=100\\ 9x+15y=1350\end{bmatrix}](https://img.qammunity.org/2020/formulas/mathematics/high-school/onxz2vxmyc36v8ev019itasbtz186y5ven.png)
Isolate x for
![x+y=100](https://img.qammunity.org/2020/formulas/mathematics/high-school/ddfbh6m9r0k12de7xhv6c8crf0vqwhrhkw.png)
![x=100-y](https://img.qammunity.org/2020/formulas/mathematics/high-school/q2n7dh96oum7wxf9ohd13ak5vozpp14vs5.png)
Substitute
into the second equation
![9\left(100-y\right)+15y=1350](https://img.qammunity.org/2020/formulas/mathematics/high-school/z52fl1d8y6ywkcnhljb2ifopi4j0iwu15p.png)
Isolate y
![900-9y+15y=1350\\900+6y=1350\\900+6y-900=1350-900\\6y=450\\(6y)/(6)=(450)/(6)\\y=75](https://img.qammunity.org/2020/formulas/mathematics/high-school/7urhl7tpgfp4vpujty8cu0zafdbtrt6hap.png)
For
substitute y = 75
![x=100-75\\x=25](https://img.qammunity.org/2020/formulas/mathematics/high-school/jwu08jjtoz0rgmm21s1ghgggr9s2u5zhkn.png)
To form 100 lb of the mixture we need 25 lbs of $9 coffee beans and 75 lbs of $15 coffee beans.