166k views
2 votes
Expand the logarithm log64a5

1. 4log6a5
2. Log64-5log6a
3. Log64+5lig6a
4. Log64 • 5log•6a

1 Answer

3 votes

Answer:

3.
\log_6 4+5\log_6 a

Explanation:

Given:

The logarithm to expand is given as:


\log_6 4a^5

We use the following property of logarithm to expand it into sum of 2 logarithms:


\log_b (xy)=\log_b x+\log_b y

Therefore,


\log_6 4a^5 =
\log_6 4+\log_6 a^5

Now, we further simplify the second logarithm using the following property:


\log_b x^m=m\log_b x

Therefore,
\log_6 a^5=5\log_6 a

This gives,


\log_6 4a^5 =
\log_6 4+5\log_6 a

Therefore, the correct choice is choice 3.

User PomPom
by
4.5k points