Answer:
3.
![\log_6 4+5\log_6 a](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3qn5j3e45q3hy583mhnzda5wkxqbi63nqu.png)
Explanation:
Given:
The logarithm to expand is given as:
![\log_6 4a^5](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2yyzir4vgx21gk1dlsskpl9h7jjdccp0cp.png)
We use the following property of logarithm to expand it into sum of 2 logarithms:
![\log_b (xy)=\log_b x+\log_b y](https://img.qammunity.org/2020/formulas/mathematics/middle-school/h5piarhgtnfz2bbszk18ms0mjuo0bw8ctc.png)
Therefore,
=
![\log_6 4+\log_6 a^5](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4vrogepeduqry67b2uw1a8bw8djl2zy4rq.png)
Now, we further simplify the second logarithm using the following property:
![\log_b x^m=m\log_b x](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ubo6rmnxpre3i1pqu6v1ohnqbllh98kk0v.png)
Therefore,
![\log_6 a^5=5\log_6 a](https://img.qammunity.org/2020/formulas/mathematics/middle-school/csw0g4yw4fjzim0s2p432cc9bbl5gplti2.png)
This gives,
=
![\log_6 4+5\log_6 a](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3qn5j3e45q3hy583mhnzda5wkxqbi63nqu.png)
Therefore, the correct choice is choice 3.