Answer:
The inverse of y is
![\textbf{f}^(( -1 ))( x ) = \frac{\textbf{x-5}}{\textbf{3}}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/byi0jkce8kczsb98m4ochabllwzh8wrzur.png)
Explanation:
To Find the inverse of
![y = 3x+5](https://img.qammunity.org/2020/formulas/mathematics/middle-school/milwv5cfr0okyofxk4doj5bvb0m3ys5lrk.png)
STEP 1: Stick a "y" in for the "f(x)"
y = 3x+5
STEP 2: Switch the x and y ( because every (x, y) has a (y, x) partner! ):
![x = 3y+5](https://img.qammunity.org/2020/formulas/mathematics/middle-school/mmfycm6acx5kvt0wwe6uw0nkei3tk1z94s.png)
STEP 3: Solve for y:
![{x-5}=3y](https://img.qammunity.org/2020/formulas/mathematics/middle-school/65ia18grwejmb1xaewu7509w7dtl363zmj.png)
![y=(x-5)/(3)](https://img.qammunity.org/2020/formulas/mathematics/college/5br37uo4r1ewuphm8skyihs1ix8lh12an3.png)
STEP 4: Stick in the inverse notation,
![f^(( -1 ))( x )](https://img.qammunity.org/2020/formulas/mathematics/middle-school/be88or0ecvmwz0erp2slu0hr352ifg7s6a.png)
![f^(( -1 ))( x ) =(x-5)/(3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/mggwd9e211qfwfh3xq0ca7vewwodpkmsi0.png)
Therefore the inverse of y is
![f^(( -1 ))( x ) = (x-5)/(3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/w4s32hzjfkrvk7hr307tkkzdibi4btk775.png)